Muscle type-specific response of HSP60, HSP72, and HSC73 during recovery after elevation of muscle temperature.

نویسندگان

  • Yasuharu Oishi
  • Kouhachi Taniguchi
  • Hisahiro Matsumoto
  • Akihiko Ishihara
  • Yoshinobu Ohira
  • Roland R Roy
چکیده

An original method to induce heat stress was used to clarify the time course of changes in heat shock proteins (HSPs) in rat skeletal muscles during recovery after a single bout of heat stress. One hindlimb was inserted into a stainless steel can and directly heated by raising the air temperature inside the can via a flexible heater twisted around the steel can. Muscle temperature was increased gradually and maintained at 42 degrees C for 60 min. Core rectal and contralateral muscle temperatures were increased <1.5 degrees C during the heat stress. HSP60, HSP72, and heat shock cognate (HSC) 73 content in the slow soleus and fast plantaris in both limbs were determined immediately (0 h) and 2, 4, 8, 12, 24, 36, 48, or 60 h after heat stress. Within 0-4 h, all HSPs were approximately 1.5- to 2.2-fold higher in heat-stressed than contralateral soleus. Compared with the contralateral plantaris, the heat-stressed plantaris had a higher (1.5-fold) HSP60 content immediately and 2 h after heat stress and a higher (2.5- to 6.8-fold) HSP72 content between 24 and 48 h after heat stress. Plantaris HSC73 content was not affected by heat stress. This unique heat-stress method provides advantages over existing systems; muscle temperature can be controlled precisely during heating and the HSP response can be compared between muscles in heat-stressed and contralateral limbs of individual rats. Results show a differential response of HSPs in the soleus and plantaris during recovery after heat stress; soleus demonstrated a more rapid and broader HSP response to heat stress than plantaris.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional properties of skeletal muscle from transgenic animals with upregulated heat shock protein 70.

The influence of inducible heat stress proteins on protecting contracting skeletal muscle against fatigue-induced injury was investigated. A line of transgenic mice overexpressing the inducible form of the 72-kDa heat shock protein (HSP72) in skeletal muscles was used. We examined the relationship between muscle contractility and levels of the constitutive (HSC73) and inducible (HSP72) forms of...

متن کامل

Endogenous expression and developmental changes of HSP72 in rat skeletal muscles.

The purpose of the present study was to determine whether endogenous factor(s) contributes to the expression of heat shock proteins (HSPs) during the early developmental stages of rat skeletal muscles. HSP72 was expressed in both the soleus and plantaris muscles at embryonic day 22 (E22). On the basis of myosin heavy chain (MHC) immunohistochemistry, HSP72 was specifically expressed in slow typ...

متن کامل

Elevation in heat shock protein 72 mRNA following contractions in isolated single skeletal muscle fibers.

The purpose of the present study was 1) to develop a stable model for measuring contraction-induced elevations in mRNA in single skeletal muscle fibers and 2) to utilize this model to investigate the response of heat shock protein 72 (HSP72) mRNA following an acute bout of fatiguing contractions. Living, intact skeletal muscle fibers were microdissected from lumbrical muscle of Xenopus laevis a...

متن کامل

Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression

Heat shock protein 60 (Hsp60) is a chaperone localizing in skeletal muscle mitochondria, whose role is poorly understood. In the present study, the levels of Hsp60 in fibres of the entire posterior group of hindlimb muscles (gastrocnemius, soleus, and plantaris) were evaluated in mice after completing a 6-week endurance training program. The correlation between Hsp60 levels and the expression o...

متن کامل

Expression of heat shock proteins in turtle and mammal hearts: relationship to anoxia tolerance.

Heat shock proteins (HSPs) may play a cardioprotective role during hypoxia or ischemia. We hypothesized that cardiac tissue from hypoxia-tolerant animals might have high levels of specific HSPs. We measured myocardial HSP60 and HSP72/73 in painted and softshell turtles during normoxia and anoxia (12 h) and after recovery (12 or 24 h). We also measured myocardial HSPs in normoxic rats and rabbit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 92 3  شماره 

صفحات  -

تاریخ انتشار 2002